Stochastic Spline-collocation Method for Constrained Optimal Control Problem Governed by Random Elliptic Pde
نویسندگان
چکیده
In this paper, we investigate a stochastic spline-collocation approximation scheme for an optimal control problem governed by an elliptic PDE with random field coefficients. We obtain the necessary and sufficient optimality conditions for the optimal control problem and establish a scheme to approximate the optimality system through the discretization with respect to the spatial space by finite elements method and the probability space by stochastic splinecollocation method. We further investigate Smolyak approximation schemes, which are effective collocation strategies for smooth problems that depend on a moderately large number of random variables. For more general control problems where the state may be non-smooth with respect to the random variables in some areas, we adopt a domain decomposition strategy to partition the random space into smooth and non-smooth parts and then apply Smolyak scheme and spline approximation respectively. A priori error estimates are derived for the state, the co-state and the control variables. Numerical examples are presented to illustrate our theoretical results.
منابع مشابه
Weighted reduced basis method for stochastic optimal control problems with elliptic PDE constraint
In this paper we develop and analyze an efficient computational method for solving stochastic optimal control problems constrained by elliptic partial differential equation (PDE) with random input data. We first prove both existence and uniqueness of the optimal solution. Regularity of the optimal solution in the stochastic space is studied in view of the analysis of stochastic approximation er...
متن کاملStochastic Galerkin Method for Constrained Optimal Control Problem Governed by an Elliptic Integro-differential Pde with Stochastic Coefficients
In this paper, a stochastic finite element approximation scheme is developed for an optimal control problem governed by an elliptic integro-differential equation with stochastic coefficients. Different from the well-studied optimal control problems governed by stochastic PDEs, our control problem has the control constraints of obstacle type, which is mostly seen in real applications. We develop...
متن کاملStochastic Collocation for Elliptic PDEs with random data - the lognormal case
We investigate the stochastic collocation method for parametric, elliptic partial differential equations (PDEs) with lognormally distributed random parameters in mixed formulation. Such problems arise, e.g., in uncertainty quantification studies for flow in porous media with random conductivity. We show the analytic dependence of the solution of the PDE w.r.t. the parameters and use this to sho...
متن کاملAnalytic regularity and collocation approximation for PDEs with random domain deformations
In this work we consider the problem of approximating the statistics of a given Quantity of Interest (QoI) that depends on the solution of a linear elliptic PDE defined over a random domain parameterized by N random variables. The elliptic problem is remapped on to a corresponding PDE with a fixed deterministic domain. We show that the solution can be analytically extended to a well defined reg...
متن کاملA Trust-Region Algorithm with Adaptive Stochastic Collocation for PDE Optimization under Uncertainty
The numerical solution of optimization problems governed by partial differential equations (PDEs) with random coefficients is computationally challenging because of the large number of deterministic PDE solves required at each optimization iteration. This paper introduces an efficient algorithm for solving such problems based on a combination of adaptive sparse-grid collocation for the discreti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017